Single-molecule transport across an individual biomimetic nuclear pore complex.

نویسندگان

  • Stefan W Kowalczyk
  • Larisa Kapinos
  • Timothy R Blosser
  • Tomás Magalhães
  • Pauline van Nies
  • Roderick Y H Lim
  • Cees Dekker
چکیده

Nuclear pore complexes regulate the selective exchange of RNA and proteins across the nuclear envelope in eukaryotic cells. Biomimetic strategies offer new opportunities to investigate this remarkable transport phenomenon. Here, we show selective transport of proteins across individual biomimetic nuclear pore complexes at the single-molecule level. Each biomimetic complex is constructed by covalently tethering either Nup98 or Nup153 (phenylalanine-glycine (FG) nucleoporins) to a solid-state nanopore. Individual translocation events are monitored using ionic current measurements with sub-millisecond temporal resolution. Transport receptors (Impβ) proceed with a dwell time of ∼2.5 ms for both Nup98- and Nup153-coated pores, whereas the passage of non-specific proteins is strongly inhibited with different degrees of selectivity. For pores up to ∼25 nm in diameter, Nups form a dense and low-conducting barrier, whereas they adopt a more open structure in larger pores. Our biomimetic nuclear pore complex provides a quantitative platform for studying nucleocytoplasmic transport phenomena at the single-molecule level in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Molecule Imaging to Characterize the Transport Mechanism of the Nuclear Pore Complex.

In the eukaryotic cell, a large macromolecular channel, known as the Nuclear Pore Complex (NPC), mediates all molecular transport between the nucleus and cytoplasm. In recent years, single-molecule fluorescence (SMF) imaging has emerged as a powerful tool to study the molecular mechanism of transport through the NPC. More recently, techniques such as single-molecule localization microscopy (SML...

متن کامل

Nuclear transport of single molecules: dwell times at the nuclear pore complex

"Nuclear transport of single molecules: dwell times at the nuclear pore complex" (2005). transport of single molecules: dwell times at the nuclear pore complex. he mechanism by which macromolecules are selectively translocated through the nuclear pore complex (NPC) is still essentially unresolved. Single molecule methods can provide unique information on topographic properties and kinetic proce...

متن کامل

Quantifying Nucleoporin Stoichiometry Inside Single Nuclear Pore Complexes In vivo

The nuclear pore complex (NPC) is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring-scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. NPCs are composed of ~30 different nucleoporins (Nups), averaged at 8, 16 or 32 copies per NPC. This estimate has not been confirmed for individual NPC...

متن کامل

Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics

Nuclear pore complexes (NPCs) lined with intrinsically disordered FG-domains act as selective gatekeepers for molecular transport between the nucleus and the cytoplasm in eukaryotic cells. The underlying physical mechanism of the intriguing selectivity is still under debate. Here, we probe the transport of ions and transport receptors through biomimetic NPCs consisting of Nsp1 domains attached ...

متن کامل

Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker’s Yeast

Nucleocytoplasmic transport is highly selective, efficient, and is regulated by a poorly understood mechanism involving hundreds of disordered FG nucleoporin proteins (FG nups) lining the inside wall of the nuclear pore complex (NPC). Previous research has concluded that FG nups in Baker's yeast (S. cerevisiae) are present in a bimodal distribution, with the "Forest Model" classifying FG nups a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 2011